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Free Vibration Analysis of Plate Structures Using Finite 
Element-Transfer Stiffness Coefficient Method 

M y u n g - S o o  C h o i *  

Department o f  Control & Mechanical Engineering, Division o f  Mechanical Engineering, Pukyong 

National University, San 100, Yongdang-Dong, Nam-Gu,  Busan 608-739, Korea 

In order to execute efficiently the free vibration analysis of 2-dimensional structures like plate 

structures, the author developed the finite element-transfer stiffness coefficient method. This 

method is based on the combination of the modeling techniques in the FEM and the transfer 

technique of the stiffness coefficient in the transfer stiffness coefficient method. Numerical results 

of the simply supported and the elastic supported rectangular plates showed that the present 

method can be successfully applied to the free vibration analysis of plate structures on a personal 

computer. We confirmed that, in the case of analyzing the free vibration of rectangular plate 

structures, the present method is superior to the FEM from the viewpoint of computation time 

and storage. 
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1. Introduction 

Various numerical methods have been develop- 

ed and used in static and dynamic analyses of 

structures. Because it is generally difficult to ob- 

tain an accurate analytical solution for structures 

with complicated shapes, various loads, and dif- 

ferent material properties. Therefore, we need to 

rely on approximate numerical methods for ob- 

taining acceptable solutions of static and dynamic 

problems. 

The finite element method (FEM) is the most 

widely used and powerful numerical method. 

However, the FEM is not always the best method 

because it takes much computer storage and com- 

putation time in the case of solving dynamic 

problems accurately (Sehmi 1989). In order to 

* E-mail : vibsound @hanmail.net 
TEL : +82-51-620-1577; FAX : +82-51-620-1574 
Department of Control & Mechanical Engineering, Di- 
vision of Mechanical Engineering, Pukyong National 
University, San 100, Yongdang-Dong, Nam-Gu, Busan 
608-739, Korea. (Manuscript Received August 5, 2002: 
Revised March 20, 2003) 

develop efficient method for dynamic analysis, 

many researchers have studied various methods 

such as the transfer matrix method (TMM) (Pes- 

tel and Leckie 1963; Lee et al., 1996), the 

dynamic substructure method (Cheung and 

Leung 1991), the spectral element method (SEM) 

(Doyle 1997; Lee and Lee 1998), the model 

reduction technique (Geradin and Chen 1995), 

and the transfer stiffness coefficient method 

(TSCM) (Kondou et al., 1996; Moon and Choi 

1999, 2000). 

Cheung (1976) presented the finite strip meth- 

od (FSM) which combines the use of Fourier 

expansions and one-dimensional finite elements. 

The FSM is an efficient analysis method for struc- 

tures with regular geometry and simple boundary 

conditions. However, it is difficult to apply for 

structures with complicated shapes and different 

material properties. 

In order to reduce structural matrix size of the 

FEM without loss of accuracy, the combined use 

of the finite element and transfer matrix was first 

suggested by Dokanish (1972) for the free vibra- 

tion analysis of plates. This method, the finite 

element-transfer matrix method (FE-TMM),  was 
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refined by several researchers for application and 

improvement (Liu and Huang 1992 ; Ohga et al., 

1993; Yuhua 1995). However, numerical insta- 

bilities occur in the TMM when it is used tbr 

calculating higher natural frequencies or res- 

ponses for a flexible beam on a stiff foundation 

because of the propagation of round-off  error in 

the transfer matrix. It results in undesirable and 

inaccurate results in the analysis of structures. 

Therefore, the F E - T M M  contains these disad- 

vantages of the TMM too. 

Lee (2000) introduced the spectral transfer ma- 

trix method (STMM) tbr analyzing periodic struc- 

tures efficiently. The STMM has the good features 

of the SEM and the TMM. However, in the case 

of analyzing long structures, it is difficult to apply 

the STMM because of the above-mentioned dis- 

advantages of the TMM. The Riccati transfer 

matrix method (Horner and Pilkey 1978) was sug- 

gested as a mean of  limiting the propagation of 

round-off  errors in the TMM. Xue (1997) pro- 

posed the combined finite element-Riccati trans- 

fer matrix method and applied it to the dynamic 

analysis of structures. 

Kondou et al. (1996) proposed the TSCM bas- 

ed on the transfer of the stiffness coefficient matrix 

related to the force and displacement vectors at 

each node of a beam structure, but it is limited to 

lumped-mass modeling. It is unable to use con- 

sistent-mass modeling. Moon and Choi (1999, 

2000) refined the TSCM for application and im- 

provement and confirmed that the technique using 

the transfer of stiffness coefficient is more effective 

than the FEM in solving accurately dynamic 

problems on a personal computer. However, so 

far the application of the TSCM has been con- 

fined to beam-like one-dimensional structures, 

so that we could not use the TSCM for analyzing 

2-dimensional structures such as plate structures. 

The purpose of this study is to extend the 

application of the TSCM to the plate structure. In 

order to execute efficiently the dynamic analysis 

of plate structures, the author developed the finite 

element-transfer stiffness coefficient method (FE-  

TSCM) based on the combination of modeling 

techniques in the FEM and the transfer technique 

of the stiffness coefficient in the TSCM. The merit 

of the FE-TSCM is to take the advantages of 

both methods, that is, the convenience of the 

modeling in the FEM and the computational 

efficiency of the TSCM. 

In this paper, the free vibration analysis algo- 

rithm of plates is formulated by the FE-TSCM. 

In order to illustrate the efficiency of the FE 

TSCM, two rectangular plate structures with var- 

ious mesh patterns are chosen as numerical ex- 

amples, and their results obtained by the FE-  

TSCM are compared with the FEM and the 

analytical solutions. 

2. Theory 

In order to describe clearly the concept of the 

FE-TSCM,  a flat plate structure consisting of a 

rectangular plate and elastic support springs is 

considered as an analytical model. 

2.1 Modeling 
A rectangular plate is divided into m strips, as 

shown in Fig. 1. Sections dividing strips are 

called nodal lines, which are designated as nodal 

line 0, nodal line I, "-, nodal line m consecutively 

from the left edge to the right edge of the plate. In 

the FE-TSCM,  the boundary conditions of the 

plate are considered as elastic support springs. 

For example, in the case of the fixed condition, it 

is replaced by corresponding spring constant of 

infinite value, and in the case of  the free condi- 

tion, by a spring constant of 0. Intermediate rigid 

conditions of the structure are easily considered 

as the corresponding support spring constants 

with infinite value, too. 

tpl I 
noda 1 
line 0 1 2 i-1 i+l m-i m 

Fig. 1 Analytical model 
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Fig. 2 
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Elastic support springs and strip i subdivided 
rectangular elements 

Strip i represents the ith strip of the plate, 

which is between nodal line i-1 and nodal line i. 

Each strip is subdivided into rectangular elements 

and 2n nodes, as shown in Fig. 2. Where n nodes 

are on the nodal line i-1, and n nodes are on the 

nodal line i. 

2.2 D y n a m i c  s t i f fnes s  matr ix  for a strip 

The mass matrix M~ and the stiffness matrix 

~:i for strip i can be obtained by the assemblage 

of the mass matrix M and the stiffness matrix K 

for each rectangular element, respectively (Petyt 

1990). The detailed expression of M and K are 

listed in the appendix. 

In the case of free vibration, the equilibrium 

equation for strip i is given by 

(Ri-o . ,q~ ~)~'~= ~'~ (1) 
where ~o is the natural frequency of  the plate, U,. 

and F~ the column vectors containing displace- 

ments and forces of all nodes on the strip i. 

Therefore, Ui  and F i  are composed of the dis- 

placement vector fi and the force vector f of each 

node on strip i are as follows : 

~ = ~ {  ~~, ~~ }, 
~=~{ u,, u~, -.., ~. }~, 
~=~{ u,, u~, ..., ~. }L 
~,=~{ p~, p~ }, (2) 

p~=T{ ~,, ~-, ..., L }~, 
p~=T{ L, ~, ..-, ~,, }~ 

where superscripts "L", "R" and subscript " i"  

represent the quantities about the left- and right- 

hand nodes of strip i, and superscript "T" denotes 

the transpose of a vector. 

Equation (l)  can be written as 

S iU~=F~ (3) 

where the dynamic stiffness matrix S~ for the strip 

i becomes 

S i = K ~ -  wq~/ (4) 

The matrix Sz can be partitioned into four 

square matrices Ai ,  Bi, Ci, Di. Then Eq. (3) 
rewritten as 

which is the relationship between the force and 

displacement vectors at the left- and right-hand 

nodes of strip i. 

2.3 Trans fer  o f  s t i f fness  coe f f i c i ent  matr ix  

In order to describe easily the transfer process 

of stiffness coefficients, a nodal line is divided 

into the left- and right- hand-sides of the nodal 

line. The r ight-hand section of strip i becomes the 

left-hand-side of nodal line i, and the left-hand 

section of strip i + l  becomes the r ight-hand-side 

of nodal line i. Therefore, Eq. (5) can be changed 
into 

{F~-I A i  Ui Ui-1 

where 

F~-I=-PL P~=~, Ui-,=UL U i = ~  
Ai=-Xi.  B i = - g .  C~=~,., D,=bi (7) 

in which F i  and U'i are the force and displace- 

ment vectors at the lef t-hand-side of nodal line i, 

and F~-~ and U~-, are the force and displacement 

vectors at the r ight-hand-side of nodal line i 1, 

respectively. We indicate quantities of the left- 

hand-side of a nodal line with the head mark 
. . . . .  on symbols, and the r ight-hand-s ide  with- 

out the head mark. The subscript "i" of F and 

U means the quantity corresponding to nodal 
line i. 

In the present method, four sub-matrices A~, 

Bi, Ci and Di are very easily obtained from Eq. 
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(7). However, in the case of the FE-TMM (Do- 

kainish 1972), the procedure obtaining the trans- 

fer matrix from a strip modeled by the FEM is 

more complicated than the FE-TSCM. 

We define the relationship between the force 

and displacement vectors at the left- and right- 

hand-side of nodal line i as follows : 

F~=S~U~ ( i = I ,  2, ..., m) (8) 

and 

F i=SzU~ ( i=0 ,  1, ..., m) (9) 

and we call the matrices S~ and S~ as the stiffness 

coefficient matrices at the left- and right-hand- 

side of the nodal line i, respectively. 

From Eqs. (6) and (9), the force vector F~-I is 

given by 

F H  =AiUi -1  + BiUi=S~-~U~-I (10) 

We can derive the relationship between the dis- 

placement vectors, U~-~ and U'~, from Eq. (10) as 

follows : 

U H  = ( S i - l - A i )  - IBiU,  (11) 

From Eqs. (6) and (8), the force vector Fi  is 

given by 

Fi:CiUi--I ~--DiUi=SiUi ( [ 2) 

and substituting Eq. (11) into Eq. (12), we get 

{ Ci (S~_~-A~) -~B~+D~ }U'~=SzU~ (13) 

Therefore, the above equation can be written as 

S i = C i V i + D i  ( i=1 ,  2, " ' ,  m) (14) 

where 

V i : G i - l B i ,  G i : S i - l - A i  (15) 

We call Eq. (14) as the field transfer equation 

of stiffness coefficient matrix, which can derive 

the stiffness coefficient matrix S~ at the left- 

hand-side of nodal line i from the stiffness 

coefficient matrix Si-~ at the right-hand-side of 

nodal line i - l .  

If there are elastic support springs at nodal line 

i, as shown in Fig. 2, the equilibrium equation of 

force vectors and the continuous condition of 

displacement vectors at the nodal line i can be 

written as 

F i = F ~ + P i U i ,  U i =  lJi (16) 

Here, the point stiffness matrix Pi  is a diagonal 

matrix and consists of linear and rotational spring 

constants at the nodal line i as follows : 

P~=diag(kz~, f{~1, Kr~, k~, A'~, K~. ..., kz,, /{~,, K~,,ii (17) 

where kz is the linear spring constant in the Z-  

direction, Kx and Kr  are the rotational spring 

constants in the X- and Y-directions. In the FE-  

TSCM, the boundary conditions of structures 

are modeled as the elastic support springs of the 

nodal line. For example, in the case of fixed 

condition at the left-hand edge of the plate, we 

consider the point stiffness matrix P0 of Eq. (17) 

as d i a g ( ~ ,  co, ~ ,  . . .  c~), in the case of free 

condition as diag(O, 0, 0, -.., 0), and in the case 

of simply supported condition as diag(co,  c~, 
0 co co, 0 , . . . ) .  

If we take the stiffness coefficient matrix Si 

at the left-hand-side of nodal line i, we can 

derive the stiffness coefficient matrix S~ at the 

right-hand-side of nodal line i. By substituting 

Eqs. (8) and (9) in Eq. (16), the stiffness coeffi- 

cient matrix S~ at the right-hand-side of nodal 

line i becoms : 

S ~ = S , + P ;  ( i = 1 , 2 ,  --., m) (18) 

which is called as the point transfer equation of 

stiffness coefficient matrix. 

Therefore, if we take the stiffness coefficient 

matrix S~-~ at the right-hand-side of nodal line 

i-1, we can obtain the matrix Si at the right- 

hand side of nodal line i from Eqs. (14) and 

(18): 

Si=CiV,.-}-Di-~-Pi ( i = 1 ,  2, " ' ,  m) (19) 

Because the boundary condition at the left- 

hand edge of the plate was modeled by the point 

stiffness matrix P0 at nodal line 0, the left-hand 

side of nodal line 0 can be considered analyti- 

cally as being free (N0=0). Therefore, force 

vector F0 becomes F0=PoU0=SoU0 from Eqs. 

(91) and (16), and we can find out:  

S0= P0 (20) 

After finding out the matrix So from Eq. (20), 

we can apply the Eq. (19) successively and obtain 

finally the stiffness coefficient matrix Sm at the 

right-hand-side of nodal line m. 
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2.4 Frequency equation 
Because the boundary condition at the right- 

hand edge of the plate was modeled by the point 

stiffness matrix Pm at nodal line m, the right- 

hand-side of nodal line m can be considered 

analytically as being free, that is, F r o : 0  and Um 

~0 .  By substituting Fro=0 in Eq. (9), the fol- 

lowing equation can be obtained 

SmUm=O (21) 

and it is essential that the determinant of the 

matrix Sm is zero. 

det Sm (co) = 0  (22) 

In the transfer process of the stiffness coefficient 

matrix Si, we have to calculate the inverse matrix 

of the matrix Gi. When the determinant of matrix 

Gg is zero, elements of the matrix Si  become 

usually asymmetric poles that change their sign 

before and after the poles of elements. Therefore, 

elements of the matrix Sm in Eq. (22) may con- 

tain asymmetric poles. If we use root-solving 

techniques (Gerald and Wheatley 1989), such as 

the bisection method and the linear interpolation 

method, for obtaining the true roots (natural 

frequencies) from Eq. (22), we may misconceive 

false roots which are undesirable and inaccurate 

as natural frequencies. 

However, these false roots can be eliminated by 

applying the following technique. This technique 

introduces the sign function to eliminate asym- 

metric poles. Asymmetric poles can be transform- 

ed into symmetric poles by multiplying the sign 

function of the determinant of matrix Sm by the 

sign functions of the determinant of matrix Gi 

( i = 1 , 2 ,  3 , . . . , m ) .  

Z = f i {  sgn(detG~) } Xsgn(detSm) (23) 
i - 1  

Therefore, we can obtain only true roots, that 

Is, natural frequencies, by applying the bisection 

method to Eq. (23). In this case, the bisection 

method needs only the sign of the function value. 

When we obtain the natural frequencies of the 

plate by the FEM, the size of the matrix is equal 
to the total number of degrees of freedom for the 

plate. However, in the case of  using the F E -  

TSCM, it is greatly reduced to the number of 

degrees of freedom for the last nodal line, that is, 

the size of matrix Sin. Therefore, it is found that 

the FE -T SCM  is more efficient than the FEM 

from the viewpoint of computer storage. 

2.5 Characteristic modes 
Substituting Eq. (15) in Eq. (11), the relation- 

ship of displacement vectors at both nodal lines of  
strip i is given as follows : 

U i - I : V ~ U i  ( i = m ,  m - l ,  ..., 1) (24) 

After obtaining natural frequencies of the plate, 

the characteristic modes of the plate are computed 

from the r ight-hand edge to the left-hand edge, 

successively. The displacement vector of the nodal 

line m is calculated as follows: after one dis- 

placement element in the displacement vector of 

the nodal line m has a reference value, the other 

displacement elements in the displacement vector 

of the nodal line m are calculated form Eq. (21). 

Displacement vectors at the other nodal lines can 

be obtained by using recursively U i : U ' i  in Eq. 

(16) and Eq. (24). 

3. Numerical Examples 

In order to illustrate the computation efficiency 

of the FE-TSCM,  we made computer programs 

by the FE-TSCM and the FEM for analyzing 

the flexural free vibration of rectangular plate 

structures. The results obtained by F E - T S C M  

were compared with those obtained by the FEM 

and the analytical solution on a personal com- 

puter (CPU : Pentium II, Memory : 64 M Byte). 

In the numerical examples, strips were made up 

of several thin rectangular elements with four 

nodes and three degrees of freedom at each node. 

The displacement vector at each node consisted of 

a displacement normal to the plane of the plate, 

3w 3w W, and two rotations 8 x = ~ -  and O y = ~ - .  The 

displacement vector of a nodal line with n nodes 
is as fol lows: 

Ui=~{ wl, 0x1, 0n, wz, 0~, 0n. " ' ,  w., 0xn, 0y. }i 
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3.1 Example 1: a rectangular plate with 4 
simply supported edges 

Example  I is a rectangular  plate structure 

which is simply supported on all four edges. 

The physical parameters o f  example 1 are as 

follows : length I m, width 0.4 m, thickness 5 mm, 

Young 's  modulus  206 GPa,  density 7860 k g / m  3, 

and Poisson's  ratio 0.3. In the numerical  calcula- 

tion, the rectangular plate is divided into 10X4, 

15X6, 2 0 x 8 ,  2 5 x 1 0 ,  4 0 × 1 6 .  and 80X32 mesh 

patterns. 

Figure 3 shows the rectangular plate divided 

into a 1 0 x 4  mesh pattern with 10 strips, 40 rec- 

tangular  elements, 55 nodes, and 165 degrees of  

freedom. 

Table  1 shows first twenty natural  frequencies 

of  example 1 with lOX4, 20X8,  4 0 ×  16, and 80X 

32 mesh patterns by the FEM,  the F E - T S C M ,  

and the analytical solution (Timoshenko  and 

Young 1974). In Table  1, (m, n) is the number  

o f  ha l f -waves  in the X -  and Y-direct ions.  

When the plate is divided into IOX4 and 20X 

8 mesh patterns, the natural  frequencies of  the 

plate obtained by the F E - T S C M  agreed with 

those obtained by the FEM.  When the plate is 

divided into 40X16 and 8 0 x 3 2  mesh patterns, 

natural frequencies of  the plate could be obtained 

by the F E - T S C M  on a personal computer.  How- 

ever, in 40X16 and 80X32 mesh patterns, we 

could not obtain natural  frequencies of  the plate 

by the F E M  on the same personal computer.  As 

the number  of  plate elements increases, the size of  

the global  mass matrix and the global  stiffness 

matrix becomes larger in the FEM.  Because the 

algori thm of the FEM have to use the large global  

matrices at the same time in the case of  4 0 x  16 

and 80 x 32 mesh patterns, it needs large computer  

storage. Therefore,  it is difficult to calculate the 

Table 1 Natural frequencies for example 1 
(unit: Hz) 

Mode FEM & FE-TSCM 

(m, n) 10x4 20x8 40x 16 

1 
(I, I) 87 88 88 

3 

(9 1/ I22 124 125 

3 
(3. I) 179 184 185 

4 
/4, 1) 260 268 270 

5 ~15 316 316 
II, 2~ 

6 
(2, 2) 343 350 352 

7 
15. I) 365 376 379 

8 
(3, 2) 392 407 412 

9 
462 487 496 

FE-TSCM I Analytical 

80 X 32 Solution 

88 88 

125 125 

185 186 

271 271 

316 316 

353 353 

380 380 

413 414 

498 499 

496 508 512 514 514 

555 590 603 607 608 

652 664 670 672 672 

673 696 696 696 697 

704 717 731 733 733 

~] 4 

3 

2 

1 

Fig. 3 

Y 

40 45 .50 55 

9 14 19 24 ~9 ~ 39 ~4 t9 54 

B [3 18 23 ~8 33 58 t3 18 5,3 

7 12 17 22 27 32 37 12 17 52 

5 11 16 21 26 31 ~6 ~1 16 51 

1000 

A rectangular plate with 10X4 mesh pattern 

725 727 735 740 

762 780 790 793 

816 845 852 854 

819 855 872 877 

838 867 891 898 

898 951 978 986 

742 

794 

855 

879 

900 

989 
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natural frequencies of the plate with large mesh 

pattern on the personal computer. 

The results by the FEM and the FE-TSCM 

converged to the analytical solutions, as the num- 

ber of rectangular elements increaseds. 

Table 2 shows computation time used for ob- 

taining natural frequencies of example I with 

10X4+ 15X6, 20X8, and 25X 10 mesh patterns by 

the FEM and the FE-TSCM. It was found from 

Table 2 that the FEM has a little advantage in 

Table 2 Computation times for example 1 
(unit: sec) 

Mesh pattern 
Method 

10X4 15x6 20X8 25×10 

FEM 8 73 413 1444 

FE-TSCM 15 40 85 166 

y 0 0 
X 

(a) First mode 

Fig. 4 

¥ D 0 
X 

(b} Second mod 

Mode shapes of a simply supported plate 

computation time for the plate with a small num- 

ber of elements, but the FE-TSCM has a greater 

advantage for the plate with many elements. 

Figure 4 shows the first and the second mode 

shapes calculated by the FE-TSCM for the sim- 

ply supported rectangular plate with the 40× 16 

mesh pattern. 

3.2 Example 2:  a plate with elastic support 

springs at center and 4 corners 

Example 2 is a rectangular plate structure with 

five elastic support springs (kz=  1.0EI0 N/m) ,  as 

shown in Fig. 5. The physical parameters of 

example 2 are identical with those for example 1. 

In the numerical calculation, the rectangular plate 

was divided into 10744, 16746, 20×8, 26×10, 

40 X 16, and 80 × 32 mesh patterns. 

Table 3 shows first twenty-five natural fre- 

quencies obtained by the FE-TSCM and the 

FEM for example 2 with 10×4, 20X8, 40X16, 

and 80 × 32 mesh patterns. 

When the plate is divided into 10×4 and 20X 

8 mesh patterns, the natural frequencies of the 

plate obtained by the FE-TSCM agree with those 

obtained by the FEM. When the plate is divided 

into 40?4 16 and 80?432 mesh patterns, we could 

not obtain natural frequencies of the plate by the 

FEM on the same personal computer. The results 

by the FEM and the FE-TSCM using small mesh 

patterns converged to those of the FE-TSCM 

using large mesh patterns. 

Table 4 shows computation time spert for ob- 

taining natural frequencies of example 2 by the 

FEM and the FE-TSCM. As the number of 

rectangular elements increaseds, the FE-TSCM 

has much advantage in computation time too. 

z 

/,","/////A '× / R 7," / 
/ / / / ,'I//_/_/! 

Fig. 5 A rectangular plate with five elastic support 
springs 
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T a b l e  3 Natural  frequencies for example 2 

(unit : Hz) 

FEM & FE-TSCM FE-TSCM 
Mode 

10×4 2 0 × 8  40X 16 80X32 

I 41 41 41 41 

2 45 44 44 44 

3 62 62 62 62 

4 92 92 92 92 

5 105 104 I04 104 

6 114 113 113 113 

7 159 158 158 158 

8 177 177 177 177 

9 218 217 217 217 

10 241 239 238 238 

I1 244 245 246 246 

12 272 275 275 275 

13 327 324 322 322 

14 376 375 375 375 

15 396 391 389 389 

16 415 420 412 422 

17 434 438 440 441 

18 451 448 446 446 

19 501 503 503 504 

20 513 509 508 508 

21 520 523 524 524 

22 582 588 591 591 

23 612 625 630 631 

24 653 657 661 662 

25 656 667 668 667 

y 0 0 
X 

(a) First mode 

Fig.  6 

y 0 0 
X 

(b) Second mode 

Mode shapes of an elastic supported plate 

F igure  6 shows the first and  the second mode  

shapes  for the elastic suppor ted  rec tangula r  plate 

with a 4 0 ×  16 mesh pat tern  by the F E - T S C M .  

T a b l e  4 Computat ion times for example 2 

(unit : sec) 

Mesh pattern 
I V I ~ t l l U U  

IOX4 16X6 2 0 × 8  26X10 

FEM 10 109 438 1783 

FE-TSCM 12 33 67 135 

It is found  from the above  Tab les  tha t  we have 

to increase the par t i t ion  n u m b e r  of  the plate  in 

o rder  to ob ta in  accurate  na tu ra l  f requency values,  

then  the F E - T S C M  is more  effective than  the 

F E M  in compu ta t i on  t ime and  compu te r  storage. 

4. Conclusions  

In order  to execute efficiently the free v ib ra t ion  

analysis  of  plate s t ructures  on  a personal  com- 

puter,  the finite e l emen t - t r ans fe r  stiffness coeffi- 

cient  me thod  was fo rmula ted  in this  paper.  The  

proposed  me thod  is based on the c o m b i n a t i o n  of  

mode l ing  techniques  in the finite e lement  me thod  

and  the t ransfer  t echn ique  of  the stiffness coeffi- 

cient  in the t ransfer  stiffness coefficient method.  

The  merit  of  the present  me thod  is to take the 

advan tages  of  bo th  the F E M  and the T S C M ,  tha t  

is, the conven ience  of  the mode l ing  in the F E M  

and the c o m p u t a t i o n  efficiency o f  the TSCM.  
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Numerical results about the simply supported 

and the elastic supported rectangular plates show- 

ed that the present method can be successfully 

applied to the free vibration analysis of plate 

structures on a personal computer. We confirmed 

that, in the case of analyzing the free vibration of 

rectangular plate structures, the present method is 

superior to the finite element method from the 

viewpoint of computation time and computer 

storage. 
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Appendix 

Z y 

T /  node3 
f y  V /" >X 

,-~node 2 node 1/;" 2a • y/' 

F i g .  A . 1  A r e c t a n g u l a r  e l e m e n t  

The mass matrix for a rectangular element is 

M -  phab r M .  M~'I] 
- - ~ L M 2 1  M22 (AI) 

The stiffness matrix for a rectangular element is 

El? [K.  K~q 
K =  48 ( 1 - v 2) ab LK2~ K2~J (A5) 

where E denotes Young's modulus, v is Poisson's 
ratio, and 

k, 
k2 
k~ 

KH= 
k~ 
k8 

-k9 

kl2 
- -  k I 3  

- -  k14 
K2~ = 

kit 
- -  k I 8  

kl9 

kl 
-k~ 
- k ,  

K22 - -  
k~ 

-ks  
k. 

ks Sym 
ks ks 
k8 k9 k~ 
k,o 0 k2 ka 
0 k~l -k4 -ks  k6 

k13 k14 kit k.8 - k19 
k15 0 - k,8 k20 0 
0 k ~ - k 1 9  0 k21 

kls k19 k12 k l s - k 1 4  
k20 0 - k13 k15 0 
0 k21 k14 0 k16 

(A6) 

(A7) 

k3 Sym 
ks k6 

- k s - k 9  kl 
kl9 0 -- k2 k3 
0 kll k4 - k s  ks 

(A8) 

where p denotes density, h is plate thickness, and 

M I I =  

M21= 

M22 = 

3454 
922b 320b 2 

-922a -252ab 
1226 398b 
398b 160b 2 
548a I68ab 

394 232b 
-232b -120b 2 

232a 112ab 
1226 548b 

-548b -240b 2 
-398a -168ab 

3454 
-922b 320b 2 

9221 -252ab 
1226 -398b 

-398b 160b 2 
-5481 168ab 

S?'m 
320d 

-548a 3454 
-168ab 922b 320b z 
-240d 922a 2521b 32012 

-232a 1226 548b 3981 
II2ab -548b -240b 2 -I681b 

-120a 2 3981 168ab 1601 ~ 
-3981 394 232b 2321 
168ab -232b -120b 2 -112ab 
16012 -232a -ll2ab -120a 2 

320a 2 

5481 3454 
-1681b-922b 320b 2 
-240fl -9221 252ab 32012 

(A2) 

(13) 

(A4) 

w h e r e  

2 
k , = 4 ( a z ÷ f l  2) H- 5 (7--2v) (A9) 

k2=2b{2a, z+ 1~ ( l + 4 v ) }  (AI0) 

k3=4bZ{ 4 a.z+ 4 "1 15 ( - -v)}  (Al l )  

k 4 = 2 1 { - - 2 f l 2 - 1 ( 1  +4v)  } (112) 

ks = - 4 v a b  (A13) 

4 ( l - - g )}  (A14) k6=4121 4 f l 2 +  15 

k 7 = -  { 2 (2 ,6 '2 - -a ' z )+5(7-2  v) } (A15) 

ks=2b{ c f l -  15 C1+4v)} (A16) 

kg=2a{2f lz+  I , ( l - v ) }  (A17) 

,j 3' 
k , o = 4 b - { 3 a 2 " - 4 s ( l - - v )  } (AI8) 

2 2 2 l k u = 4 a  {~-fl  - ~ - ~ ( l - - v )  } (A19) 
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/eta------{ 2(a 2 + ,82) --2(7--2v)} (A20) 

kla=2b{ -c/2++(1 - v) } (A21) 

kt4=2a{ f l a - l  ( l - v )  } (A22) 

kls=4b2{ 1 ~_a2+~_( 1 I -v)} (A23) 

kl6=4aZ{ 1~,8 z +~-( 11  --v)} (A24) 

k,r=2 (,Sa-2a 2) - 4 (7 -2v )  (A25) 

k18=2~{-2~-+I,-v/} tA26/ 
klg=2a{-~2+~i,+4vt} ~A27! 

kzl=4aZ{ 2Rz--4~(I--V)}3" 15"" (A29) 
a b a=b  -' /~=a (A30) 




